Core Module Documentation#
- neuralprophet.plot_forecast_plotly.conformal_plot_plotly(fig, df_cp_lo, df_cp_hi, plotting_backend)#
Plot conformal prediction intervals and quantile regression intervals in one plot
- Parameters
fig (plotly.graph_objects.Figure) – Figure showing the quantile regression intervals
df_cp_lo (dataframe) – dataframe containing the lower bound of the conformal prediction intervals
df_cp_hi (dataframe) – dataframe containing the upper bound of the conformal prediction intervals
- neuralprophet.plot_forecast_plotly.get_forecast_component_props(fcst, comp_name, plot_name=None, multiplicative=False, bar=False, rolling=None, add_x=False, fill=False, num_overplot=None, **kwargs)#
Prepares a dictionary for plotting the selected forecast component with plotly.
- Parameters
fcst (pd.DataFrame) – Output of m.predict
comp_name (str) – Name of the component to plot
plot_name (str) – Name of the plot
multiplicative (bool) – Flag whetther to plot the y-axis as percentage
bar (bool) – Flag whether to plot the component as a bar
rolling (int) – Rolling average to underplot
add_x (bool) – Flag whether to add x-symbols to the plotted points
fill (bool) – Add fill between signal and x(y=0) axis
num_overplot (int) – the number of forecast in focus
- Return type
Dictionary with plotly traces, xaxis and yaxis
- neuralprophet.plot_forecast_plotly.get_multiforecast_component_props(fcst, comp_name, plot_name=None, multiplicative=False, bar=False, focus=1, num_overplot=None, **kwargs)#
Prepares a dictionary for plotting the selected multi forecast component with plotly
- Parameters
fcst (pd.DataFrame) – Output of m.predict
comp_name (str) – Name of the component to plot
plot_name (str) – Name of the plot
multiplicative (bool) – Flag whetther to plot the y-axis as percentage
bar (bool) – Flag whether to plot the component as a bar
focus (int) – Id of the forecast to display
add_x (bool) – Flag whether to add x-symbols to the plotted points
- Return type
Dictionary with plotly traces, xaxis and yaxis
- neuralprophet.plot_forecast_plotly.get_seasonality_props(m, fcst, df_name='__df__', comp_name='weekly', multiplicative=False, quick=False, **kwargs)#
Prepares a dictionary for plotting the selected seasonality with plotly
- Parameters
m (NeuralProphet) – Fitted NeuralProphet model
fcst (pd.DataFrame) – Output of m.predict
df_name (str) – ID from time series that should be plotted
comp_name (str) – Name of the component to plot
multiplicative (bool) – Flag whetther to plot the y-axis as percentage
quick (bool) – Use quick low-level call of model
- Return type
Dictionary with plotly traces, xaxis and yaxis
- neuralprophet.plot_forecast_plotly.plot(fcst, quantiles, xlabel='ds', ylabel='y', highlight_forecast=None, line_per_origin=False, figsize=(700, 210), resampler_active=False, plotly_static=False)#
Plot the NeuralProphet forecast
- Parameters
fcst (pd.DataFrame) – Output of m.predict
quantiles (list) – Quantiles for which the forecasts are to be plotted.
xlabel (str) – Label name on X-axis
ylabel (str) – Label name on Y-axis
highlight_forecast (int) – i-th step ahead forecast to highlight.
line_per_origin (bool) – Print a line per forecast of one per forecast age
figsize (tuple) – Width, height in inches.
resampler_active (bool) – Flag whether to activate the plotly-resampler
plotly_static (bool) – Flag whether to generate a static svg image
- Return type
Plotly figure
- neuralprophet.plot_forecast_plotly.plot_components(m, fcst, plot_configuration, df_name='__df__', one_period_per_season=False, figsize=(700, 210), resampler_active=False, plotly_static=False)#
Plot the NeuralProphet forecast components.
- Parameters
m (NeuralProphet) – Fitted model
fcst (pd.DataFrame) – Output of m.predict
plot_configuration (dict) – dict of configured components to plot
df_name (str) – ID from time series that should be plotted
one_period_per_season (bool) – Plot one period per season, instead of the true seasonal components of the forecast.
figsize (tuple) – Width, height in inches.
resampler_active (bool) – Flag whether to activate the plotly-resampler
plotly_static (bool) – Flag whether to generate a static svg image
- Return type
Plotly figure
- neuralprophet.plot_forecast_plotly.plot_interval_width_per_timestep(q_hats, method, resampler_active=False)#
Plot the nonconformity scores as well as the one-sided interval width (q).
- Parameters
q_hats (dataframe) – prediction interval widths (or q) for each timestep
method (str) –
name of conformal prediction technique used
- Options
(default)
naive
: Naive or Absolute Residualcqr
: Conformalized Quantile Regression
resampler_active (bool) – Flag whether to activate the plotly-resampler
- Returns
Figure showing the q-values for each timestep
- Return type
plotly.graph_objects.Figure
- neuralprophet.plot_forecast_plotly.plot_nonconformity_scores(scores, alpha, q, method, resampler_active=False)#
Plot the NeuralProphet forecast components.
- Parameters
scores (dict) – nonconformity scores
alpha (float) – user-specified significance level of the prediction interval
q (float or list) – prediction interval width (or q) for symmetric prediction interval or for upper and lower prediction interval, respectively
method (str) –
name of conformal prediction technique used
- Options
(default)
naive
: Naive or Absolute Residualcqr
: Conformalized Quantile Regression
resampler_active (bool) – Flag whether to activate the plotly-resampler
- Returns
Figure showing the nonconformity score with horizontal line for q-value based on the significance level or alpha
- Return type
plotly.graph_objects.Figure