Core Module Documentation#
- neuralprophet.plot_forecast_matplotlib.plot(fcst, quantiles, ax=None, xlabel='ds', ylabel='y', highlight_forecast=None, line_per_origin=False, figsize=(10, 6))#
Plot the NeuralProphet forecast.
- Parameters
fcst (pd.DataFrame) – Output of m.predict
quantiles (list) – Quantiles for which the forecasts are to be plotted
ax (matplotlib axes) – Axes to plot on
xlabel (str) – Label name on X-axis
ylabel (str) – Label name on Y-axis
highlight_forecast (int) – i-th step ahead forecast to highlight.
line_per_origin (bool) – Print a line per forecast of one per forecast age
figsize (tuple) – Width, height in inches.
- Returns
Figure showing the NeuralProphet forecast
- Return type
matplotlib.pyplot.figure
Examples
Base usage
>>> from neuralprophet import NeuralProphet >>> m = NeuralProphet() >>> metrics = m.fit(df, freq="D") >>> future = m.make_future_dataframe(df=df, periods=365) >>> forecast = m.predict(df=future) >>> fig_forecast = m.plot(forecast)
Additional plot specifications
>>> m.plot(forecast, >>> xlabel="ds", >>> ylabel="y", >>> highlight_forecast=None, >>> line_per_origin=False, >>> figsize=(10, 6) >>> )
- neuralprophet.plot_forecast_matplotlib.plot_components(m, fcst, plot_configuration, df_name='__df__', quantile=0.5, one_period_per_season=False, figsize=None)#
Plot the NeuralProphet forecast components.
- Parameters
m (NeuralProphet) – Fitted model
fcst (pd.DataFrame) – Output of m.predict
plot_configuration (dict) – dict of configured components to plot
df_name (str) – ID from time series that should be plotted
quantile (float) – Quantile for which the forecast components are to be plotted
one_period_per_season (bool) – Plot one period per season, instead of the true seasonal components of the forecast.
figsize (tuple) –
Width, height in inches.
Note
Default value is set to
None
-> automaticfigsize = (10, 3 * npanel)
- Returns
Figure showing the NeuralProphet forecast components
- Return type
matplotlib.pyplot.figure
- neuralprophet.plot_forecast_matplotlib.plot_forecast_component(fcst, comp_name, plot_name=None, ax=None, figsize=(10, 6), multiplicative=False, bar=False, rolling=None, add_x=False, fill=False)#
Plot a particular component of the forecast.
- Parameters
fcst (pd.DataFrame) – Output of m.predict
comp_name (str) – Name of the component to plot
plot_name (str) – Name of the plot Title
ax (matplotlib axis) – Matplotlib Axes to plot on
figsize (tuple) –
Width, height in inches. Ignored if ax is not None
Note
Default value is set to
figsize = (10, 6)
multiplicative (bool) – Set y axis as percentage
bar (bool) – Make barplot
rolling (int) – Rolling average underplot
add_x (bool) – Add x symbols to plotted points
fill (bool) – Add fill between signal and x(y=0) axis
- Returns
List of Artist objects containing a particular forecast component
- Return type
matplotlib.artist.Artist
- neuralprophet.plot_forecast_matplotlib.plot_interval_width_per_timestep(q_hats, method)#
Plot the nonconformity scores as well as the one-sided interval width (q).
- Parameters
q_hats (dataframe) – prediction interval widths (or q) for each timestep, contains column
q_hat_sym
for symmetric q orq_hat_lo
andq_hat_hi
for asymmetric qmethod (str) –
name of conformal prediction technique used
- Options
(default)
naive
: Naive or Absolute Residualcqr
: Conformalized Quantile Regression
- Returns
Figure showing the q-values for each timestep
- Return type
matplotlib.pyplot.figure
- neuralprophet.plot_forecast_matplotlib.plot_multiforecast_component(fcst, comp_name, plot_name=None, ax=None, figsize=(10, 6), multiplicative=False, bar=False, focus=1, num_overplot=None)#
Plot a particular component of the forecast.
- Parameters
fcst (pd.DataFrame) – Output of m.predict.
comp_name (str) – Name of the component to plot.
plot_name (str) – Name of the plot Title.
ax (matplotlib axis) – Matplotlib Axes to plot on.
figsize (tuple) –
Width, height in inches, ignored if ax is not None.
Note
Default value is set to
figsize = (10, 6)
multiplicative (bool) – Set y axis as percentage
bar (bool) – Make barplot
focus (int) – Forecast number to portray in detail.
num_overplot (int) –
Overplot all forecasts up to num
Note
Default value is set to
num_overplot = None
-> only plot focus
- Returns
List of Artist objects containing a particular forecast component
- Return type
matplotlib.artist.Artist
- neuralprophet.plot_forecast_matplotlib.plot_nonconformity_scores(scores, alpha, q, method)#
Plot the nonconformity scores as well as the one-sided interval width (q).
- Parameters
scores (dict) – nonconformity scores
alpha (float or tuple) – user-specified significance level of the prediction interval, float if coverage error spread arbitrarily over left and right tails, tuple of two floats for different coverage error over left and right tails respectively
q (float or list) – prediction interval width (or q)
method (str) –
name of conformal prediction technique used
- Options
(default)
naive
: Naive or Absolute Residualcqr
: Conformalized Quantile Regression
- Returns
Figure showing the nonconformity score with horizontal line for q-value based on the significance level or alpha
- Return type
matplotlib.pyplot.figure