Core Module Documentation¶
- neuralprophet.utils.create_event_names_for_offsets(event_name, offset)¶
Create names for offsets of every event
- Parameters
event_name (string) – Name of the event
offset (int) – Offset of the event
- Returns
Name created for the offset of the event
- Return type
string
- neuralprophet.utils.events_config_to_model_dims(events_config, country_holidays_config)¶
- Convert user specified events configurations along with country specific
holidays to input dims for TimeNet model.
- Parameters
events_config (OrderedDict) – Configurations (upper, lower windows, regularization) for user specified events
country_holidays_config (configure.Holidays) – Configurations (holiday_names, upper, lower windows, regularization) for country specific holidays
- Returns
input dims for TimeNet model
Note
This dictionaries’ keys correspond to individual holidays and contains configs such as the mode, list of event delims of the event corresponding to the offsets and indices in the input dataframe corresponding to each event.
- Return type
OrderedDict
- neuralprophet.utils.fcst_df_to_last_forecast(fcst, n_last=1)¶
Converts from line-per-lag to line-per-forecast.
- Parameters
fcst (pd.DataFrame) – Forecast df
n_last (int) – Number of last forecasts to include
- Returns
Dataframe where yhat1 is last forecast, yhat2 second to last etc
- Return type
pd.DataFrame
- neuralprophet.utils.get_holidays_from_country(country, df=None)¶
Return all possible holiday names of given country
- Parameters
country (string) – Country name to retrieve country specific holidays
df (Dataframe) – Dataframe from which datestamps will be retrieved from
- Returns
All possible holiday names of given country
- Return type
set
- neuralprophet.utils.reg_func_abs(weights)¶
Regularization of weights to induce sparcity
- Parameters
weights (torch.Tensor) – Model weights to be regularized towards zero
- Returns
Regularization loss
- Return type
torch.Tensor
- neuralprophet.utils.reg_func_events(events_config, country_holidays_config, model)¶
Regularization of events coefficients to induce sparcity
- Parameters
events_config (OrderedDict) – Configurations (upper, lower windows, regularization) for user specified events
country_holidays_config (OrderedDict) – Configurations (holiday_names, upper, lower windows, regularization) for country specific holidays
model (TimeNet) – The TimeNet model object
- Returns
Regularization loss
- Return type
scalar
- neuralprophet.utils.reg_func_regressors(regressors_config, model)¶
Regularization of regressors coefficients to induce sparsity
- Parameters
regressors_config (OrderedDict) – Configurations for user specified regressors
model (TimeNet) – TimeNet model object
- Returns
Regularization loss
- Return type
scalar
- neuralprophet.utils.reg_func_trend(weights, threshold=None)¶
Regularization of weights to induce sparcity
- Parameters
weights (torch.Tensor) – Model weights to be regularized towards zero
threshold (float) – Value below which not to regularize weights
- Returns
regularization loss
- Return type
torch.Tensor
- neuralprophet.utils.regressors_config_to_model_dims(regressors_config)¶
Convert the NeuralProphet user specified regressors configurations to input dims for TimeNet model.
- Parameters
regressors_config (OrderedDict) – Configurations for user specified regressors
- Returns
Input dims for TimeNet model.
Note
This dictionaries’ keys correspond to individual regressor and values in a dict containining the mode and the indices in the input dataframe corresponding to each regressor.
- Return type
OrderedDict
- neuralprophet.utils.season_config_to_model_dims(season_config)¶
Convert the NeuralProphet seasonal model configuration to input dims for TimeNet model.
- Parameters
season_config (configure.AllSeason) – NeuralProphet seasonal model configuration
- Returns
Input dims for TimeNet model
- Return type
dict(int)
- neuralprophet.utils.set_auto_seasonalities(df, season_config)¶
Set seasonalities that were left on auto or set by user.
Note
Turns on yearly seasonality if there is >=2 years of history.
Turns on weekly seasonality if there is >=2 weeks of history, and the spacing between dates in the history is <7 days.
Turns on daily seasonality if there is >=2 days of history, and the spacing between dates in the history is <1 day.
- Parameters
df (Dataframe) – Dataframe from which datestamps will be retrieved from
season_config (configure.AllSeason) – NeuralProphet seasonal model configuration, as after __init__
- Returns
Processed NeuralProphet seasonal model configuration
- Return type
- neuralprophet.utils.set_log_level(log_level='INFO', include_handlers=False)¶
Set the log level of all logger objects
- Parameters
log_level (str) – The log level of the logger objects used for printing procedure status updates for debugging/monitoring. Should be one of
NOTSET
,DEBUG
,INFO
,WARNING
,ERROR
orCRITICAL
include_handlers (bool) – Include any specified file/stream handlers
- neuralprophet.utils.set_random_seed(seed=0)¶
Sets the random number generator to a fixed seed.
- Parameters
seed (numeric) – Seed value for random number generator
Note
This needs to be set each time before fitting the model.
- neuralprophet.utils.set_y_as_percent(ax)¶
Set y axis as percentage
- Parameters
ax (matplotlib axis) – Respective y axis element
- Returns
Manipulated axis element
- Return type
matplotlib axis
- neuralprophet.utils.symmetric_total_percentage_error(values, estimates)¶
Compute STPE
- Parameters
values (np.array) – Input values
estimates (np.array) – Respective estimates of input values
- Returns
Symmetric total percentage error
- Return type
float