Contents Menu Expand Light mode Dark mode Auto light/dark mode
View NeuralProphet @ Facebook Forecasting Summit!
NeuralProphet documentation
Logo
GitHub
  • Full Simple Model
  • Model Overview
    • Trend
    • Seasonality
    • Auto-regression
    • Lagged-regression
    • Events
    • Future-regression
    • Hyperparameter-selection
  • Changes from Prophet
  • Contribution

Feature Tutorials

  • Autoregression
  • Running benchmarking experiments
  • Prediction Collection
  • Test and CrossValidate
  • Using Lagged Covariates
  • Modeling Holidays and Special Events
  • Multiplicative Seasonality
  • Sparse Autoregression
  • Sub-daily data
  • Fitting a changing trend
  • Global Model
  • Live loss plotting during training

Application Tutorials

  • Building load forecasting: Hospital in SF
  • Renewable Energy: Forecasting hourly solar irradiance

Code Documentations

  • configure.py
  • df_utils.py
  • forecaster.py
  • hdays.py
  • metrics.py
  • plot_forecaster.py
  • plot_model_parameters.py
  • time_dataset.py
  • time_net.py
  • utils.py

ContributeΒΆ

We compiled a Contributing to NeuralProphet page with practical instructions and further resources to help you become part of the family.

Next
Autoregression
Previous
What has Changed from Prophet
Copyright © 2021, Oskar Triebe | Built with Sphinx and @pradyunsg's Furo theme. | Show Source